
MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging

Aurélien Bouteiller*, Franck Cappello* †, Thomas Hérault*,
Géraud Krawezik*, Pierre Lemarinier*, Frédéric Magniette*

*LRI, Université de Paris Sud, Orsay, France
†INRIA Futurs, Saclay, France

{bouteill,fci,herault,gk,lemarini,magniett}@lri.fr
URL: http://www.lri.fr/ ˜gk/MPICH-V

Abstract

Execution of MPI applications on clusters and Grid de-
ployments suffering from node and network failures moti-
vates the use of fault tolerant MPI implementations.

We present MPICH-V2 (the second protocol of MPICH-
V project), an automatic fault tolerant MPI implementation
using an innovative protocol that removes the most limiting
factor of the pessimistic message logging approach: reli-
able logging of in transit messages. MPICH-V2 relies on
uncoordinated checkpointing, sender based message log-
ging and remote reliable logging of message logical clocks.

This paper presents the architecture of MPICH-V2, its
theoretical foundation and the performance of the imple-
mentation. We compare MPICH-V2 to MPICH-V1 and
MPICH-P4 evaluating a) its point-to-point performance, b)
the performance for the NAS benchmarks, c) the applica-
tion performance when many faults occur during the exe-
cution. Experimental results demonstrate that MPICH-V2
provides performance close to MPICH-P4 for applications
using large messages while reducing dramatically the num-
ber of reliable nodes compared to MPICH-V1.

1 Introduction

A current trend in high performance computing is the use
of large scale computing infrastructures such as clusters and
Grid deployments harnessing thousands of processors. Ma-
chines of the Top 500, and current large Grid deployments
(TERA Grid, J-Grid, DEISA, etc.), campus/company wide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC’03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

desktop Grids are examples of such infrastructures. In all
these infrastructures, node and network faults are likely to
occur, obliging the use of a programming model allowing
fault management and/or a fault tolerant runtime.

Users of these platforms are very familiar with explicit
message passing and their applications often use MPI [21]
as the message passing library. If the need for fault tolerant
MPI implementations is well accepted, the way how faults
should be managed is still an open issue [14]: a) the pro-
grammer of the application may save periodically interme-
diate results on reliable media during the execution in case
of an entire restart, b) the functions of the MPI implemen-
tation may be augmented to return information about faults
and accept communicator reconfiguration [13] or c) the MPI
implementation hides the faults to the programmer and the
user by providing a fully automatic fault detection and re-
covery. The latter approach, while very interesting for the
end user, suffers either from limited fault tolerant capabili-
ties or high resource cost. Examples of such automatic fault
tolerant MPI implementations are based on the optimistic
or causal message logging approach. While in theory these
protocols may tolerate any number of faults if augmented by
appropriate mechanisms, none of their existing implemen-
tation tolerates more than one fault, involving the restart of
the full system in case of multiple faults. Examples of auto-
matic n-faults tolerant MPI protocols that tolerate n concur-
rent faults of MPI process, n being the total number of MPI
processes , follow the pessimistic message logging princi-
ple (storing all in transit messages on reliable media) and
thus require a large number of non computational reliable
resources.

MPICH-V is a research effort with theoretical stud-
ies, experimental evaluations and pragmatic implementa-
tions aiming to provide a MPI implementation based on
MPICH[15], featuring multiple fault tolerant protocols. In
this paper we present the second protocol for MPICH-V

1

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

called MPICH-V2 associating the low additional resource
cost of sender based message logging and the capacity to
tolerate n concurrent faults of the pessimistic message log-
ging strategy. (note: for the rest of the paper, MPICH-V1
stands for the first version of MPICH-V presented in [5]).
This original protocol still follows uncoordinated check-
point, distributed message logging and uses a reliable coor-
dinator and checkpoint servers. The features of MPICH-V2
make it attractive for a) large clusters, b) clusters made from
collection of nodes in a LAN environment (Desktop Grid),
c) Grid deployments harnessing several clusters and d) cam-
pus/industry wide desktop Grids with volatile nodes (i.e. all
infrastructures featuring synchronous network or control-
lable area network). This paper presents the key principles
of MPICH-V2, its global architecture, the theoretical foun-
dations of the protocol, the architecture of its components
and the evaluation of its performance on the NAS bench-
mark compared to MPICH-V1 and MPICH-P4. Following
our expectations, MPICH-V2 reaches a performance close
to the one of MPICH-P4 and still features the same fault tol-
erance properties of MPICH-V1 while requiring much less
reliable resources.

2 Challenges for Scalable Auto-
matic/Transparent Fault Tolerant MPI

Building a scalable automatic/transparent fault tolerant
MPI implementation means finding solutions for several
difficult issues.

MPI Process Volatility Tolerance In large scale dis-
tributed systems like large clusters, Grid deployments and
Desktop Grids, any number of nodes may leave the sys-
tem at any time. Thus, there are two challenges: 1) survive
massive lost of nodes and 2) high frequency of faults. An
example of massive lost of nodes in a Grid infrastructure is
when all the nodes of a cluster disconnect the system due
to a network connection failure between the cluster and the
rest of the Grid. Note that conversely, a cluster may join
the Grid and continue the execution of the lost MPI pro-
cesses. An example of high fault frequency is the large
Desktop Grids where nodes may join/leave the system in-
dependently and unpredictably. A volatility tolerant MPI
implementation should be able to detect the failure, roll-
back the appropriate MPI process possibly on a different
node, and continue the execution independently of the fault
number and frequency. This means that the fault tolerance
system should itself survive node failure during the repair
protocol.

MPI Implementation Independence Designing a fault
tolerant protocol/runtime for MPI is a strong effort which
should work independently of any particular specificities
of an MPI implementation. This is a very important is-
sue because, the protocol should work for a large variety of

MPI implementations, the protocol integration within MPI
should not compromise the design and the semantic of the
implementation (how global operations are implemented,
multi-protocols point-to-point communication), the proto-
col should be easily adaptable to new MPI implementation
versions. The direct implication of these requirements is
a minimum modification of the MPI implementation. For
example, in MPICH-V, the MPICH implementation is not
aware of fault and recovery events.

Scalable Architecture In fault tolerant distributed sys-
tems, scalability concerns 1) the protocol requirements in
terms of synchrony and message complexity and 2) the
number of reliable nodes. Checkpoint and restart protocols
should not rely on global synchronization simply because
some nodes may leave the system during the synchroniza-
tion. Redundancy of MPI processes would involve an active
or passive replication strategy. These strategies require an
atomic broadcast for each message which is proved to be
reducible to the consensus problem. While removing com-
pletely the need of reliable nodes is very difficult, a scalable
design should limit their number. If the MPI implementa-
tion is to tolerate n concurrent faults (n being the number
of MPI processes), then a reliable coordinator and a set of
reliable remote checkpoint servers should be used. The de-
sign of such reliable nodes would typically use the active or
passive replication strategy.

Nondeterministic Reception Order Some MPI low
level control messages as well as the user level API allow
nondeterministic reception order at the receiver side. For
the execution correctness after failures, internal task events
and task communications of restarted tasks should be re-
played in a consistent way according to the non failed tasks.
The execution is considered consistent if after the failure,
the execution is one of the possible executions without fail-
ure. Thus, a mechanism should be designed to record the
reception order at the receiver side and force the replayed
receptions, after a failure, in the order occurred before the
failure. Forcing this property should not lead to compute
a global value (consensus) or to force a restarted process
to contact all other processes of the application to get the
messages to be received in a correct order.

3 Related Work

Fault tolerance for explicit message passing in dis-
tributed system has been investigated by many research
projects. Many techniques are presented and discussed in
[10] and [20]. The first paper about MPICH-V [5] presents
a classification of fault tolerant MPI environments, distin-
guishing two axes: the fault tolerant technique and the level
of the software stack where the fault tolerance is managed.

Some other works to make MPI fault tolerant exist.
MPI/FT [4] considers task redundancy to provide fault tol-

2

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

erance. It uses a central coordinator that monitors the appli-
cation progress, logs the messages, manages control mes-
sages between redundant tasks and restarts failed MPI pro-
cess. FT-MPI [12, 13] handles failures at the MPI commu-
nicator level and lets the application manage the recovery.
When a fault occurs, all MPI processes of the communicator
are informed about the fault. This information is transmitted
to the application through the returning value of MPI calls.
The main advantage of FT-MPI is its performance since it
does not checkpoint nor log, but its main drawback is the
lack of transparency for the programmer.

In this paper we focus on automatic/transparent fault tol-
erance techniques.

3.1 Automatic/Transparent Fault Tolerance in
Distributed Systems

There are several ways to provide automatic/transparent
fault tolerance in distributed systems. The main approaches
are crash and recovery protocols that consist in restarting a
set of processes when a failure occurs. The theoretical foun-
dation of these protocols considers that a distributed execu-
tion can be entirely described by the state of all distributed
processes plus the in-transit messages. Two main tech-
niques are used for saving the distributed execution state
and recovering from systems failures: coordinated check-
point and uncoordinated checkpoint associated with mes-
sage logging.

The first kind of techniques computes a snapshot of the
distributed execution. In all cases, the process states are
saved in reliable media. Several algorithms have been pro-
posed for saving the in-transit messages. In the Connection
Machine CM5[16], the state of all network routers, includ-
ing the in-transit messages is saved. Other algorithms re-
move the in-transit messages from the network (stopping
message injection and waiting for the reception of all sent
messages) and save them along with the process images.
The most known algorithm of this family is the one pro-
posed by Chandy and Lamport [6]. Coordinated checkpoint
involves the rollback of all processes from the last snapshot
when a faulty situation is detected, even when a single pro-
cess crashes. Cocheck [22], Starfish [1] and Clip [7] are
fault tolerant MPI based on coordinated checkpoint.

Uncoordinated checkpoint protocols allow all processes
to execute a checkpoint independently of the others. The
theoretical foundation of this technique considers that a pro-
cess execution (sequence of state changes) in a distributed
execution is determined only by its message receptions[23].
Thus this technique relies on message logging in addition to
process checkpointing to ensure the complete description of
a process execution state in case of its failure. Message log-
ging protocols consist in 1) logging all received messages
and 2) re-sending the same relevant messages, in the same
order, to the crashed processes during their re-execution.

This principle provides the guaranty that a re-executed pro-
cess starting from a previous correct state (the beginning of
the execution or a consistent checkpoint image) will reach
a state matching the rest of the system, as before the crash.
There are three kinds of message logging protocols : opti-
mistic, pessimistic and causal. Pessimistic protocols ensure
that all messages received by a process before it sends in-
formation in the system are logged on reliable media so that
they can be re-sent later and only if necessary during roll-
back. Optimistic protocols just ensure that all messages will
eventually be logged. So one usual way to implement opti-
mistic logging is to log the messages on non-reliable media.
Finally causal protocols log message information of a pro-
cess in all causally dependent processes. Property formal-
ism of those three techniques can be found in [2] and differ-
ent crash and recovery protocols are listed in [10]. MPICH-
V2 is based on uncoordinated checkpoint associated with
pessimistic message logging.

3.2 Fault Tolerant MPI Implementations Based
on Message Logging

MPICH-V1[5] is the first protocol of MPICH-V. It has
been designed to tolerate a high node volatility. It is based
on uncoordinated checkpointing and pessimistic message
logging protocol storing all communications of the system
on reliable media. To ensure this property, every comput-
ing processes is associated with a reliable process called
Channel Memory. Every communication sent to a process
is stored and ordered on its associated Channel Memory. To
receive a message, a process sends a request to its associated
Channel Memory. After a crash, a re-executing process re-
trieves all lost receptions in the correct order by requesting
them to its Channel Memory. A main property of MPICH-
V1 is the uncoordinated restart: a process re-execution is
independent of the other processes of the system.

The use of Channel Memory has a major impact on the
performance (dividing the bandwidth by a factor of 2) and
the cost of the fault tolerance system (high performance re-
quires a large number of Channel Memories). The main
motivation for MPICH-V2 is to remove the need of Chan-
nel Memories in the perspective of reducing the overhead
and cost of fault tolerance.

MPI-FT[18] is based on message logging protocol. It
uses a special entity called Observer. This process is sup-
posed reliable. It checks the aliveness of all MPI peers and
re-spawns crashed ones. Messages can be logged follow-
ing two different approaches. The first way logs messages
locally to the sender in an optimistic message logging way.
In the case of a crash, the Observer controls all processes
asking them to re-send old messages. The second approach
logs all the messages on the Observer in a pessimistic mes-
sage logging way.

Manetho[8, 9] follows a causal logging protocol. It logs

3

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

the messages locally to the sender and adds in all MPI com-
munications the antecedence graph, mainly describing the
partial order of all communications of the execution. Thus
either the information about a message to be replayed can
be given by an alive process or all processes depending on
that message have crashed. In this last case, there is no need
to force the same execution, since all dependent processes
will play another equivalent execution. The main differ-
ence between MPICH-V2 and Manetho, separating them
in different classes of protocol, is that information -about
receptions- is logged on a reliable medium rather than ap-
pended to the messages.

Egida [20] is based on a language specifying the roll-
back recovery protocol mechanism to implement. A library
has been integrated with MPICH[15] over P4’s lower layer.
This library provides basic components needed in general
rollback recovery protocols such as information sending
to reliable media. The programmer/user can re-implement
some components and specify the protocol. All the send-
receive calls of MPICH are replaced by those of the library.
Contrary to this work, we only replace the P4 driver by an-
other one and do not change anything else in MPICH.

A protocol close to MPICH-V2 is presented in [11].
While this study and MPICH-V2 shared the same con-
cepts, the study provides no architecture principle, theoret-
ical foundation, implementation detail, performance evalu-
ation and merit comparison against non fault tolerant MPI
and other fault tolerant MPI implementations.

4 MPICH-V2 Architecture

MPICH-V2 is based on an original pessimistic sender-
based message logging protocol. The current implementa-
tion and its components are described in this section.

4.1 The Pessimistic Sender-Based Message Log-
ging Protocol

The context of non coordinated checkpoints implies the
use of message logging protocols. They are used to ensure
that every restarted process will reach a state consistent with
the rest of the system, before contributing to it again. On
this purpose, any logging protocol keeps a trace of events
happening on every process, in order to replay the logged
events during re-execution.

We consider the following model of failure: a process
may stop its execution at any point, then after a finite time,
restarts in any arbitrary state already reached. Since there
are mechanisms to ensure the completeness of messages,
we assume that a message is always completely received
or not at all if the sender or the receiver crashes during the
transfer.

Under a piecewise deterministic assumption (every event
following a logged event is deterministic or logged [23]),

it is proven that if every non deterministic event occurs in
the same causal order during the re-execution, the system
reaches a configuration (description of the complete state of
the system) accessible by a fault-free execution.

Roughly speaking, pessimistic logging protocols are de-
fined as logging protocols ensuring that every logged event
is retrievable whatever are the failures. In typical MPI pro-
cesses, non deterministic events are only message recep-
tions.

The MPICH-V2 protocol is pessimistic sender-based: it
keeps a copy of each message payload at the sender side
(potentially volatile), and logs some causality information
on a reliable media.

crash
event logger

for p

p
(id,l)

r

q
m

Figure 1. Protocol in execution phase for p

Each time a process sends a message, or receives one, it
increases a local logical clock. Every message m sent from
q to p has a unique identifier id (see figure 1). A copy of
m is kept in q; when p receives m, it delivers m to the MPI
process, then logs (id, l) on a reliable media, where l is its
logical clock. Nevertheless, the process p is not allowed to
send a message (and thus to have an effect on the system)
before being ensured that the message is correctly logged
(through the use of acknowledge messages).

p

for p
reliable media

q

r

A

B C
D

restart

re−execution phase

Figure 2. Protocol in re-execution phase for p

When a process p crashes, after a finite time, it is
restarted in any previous state it reached (see figure 2). It
retrieves then its set of logged couples (id, l) (phase A),
and asks every other process to start again to send messages
from the oldest identified one of the set (phase B). Note that
the neighbor processes are not rolled back, they just send
again their copy of the old messages as they concurrently
continue their normal execution. The couples (id, l) and the
logical clocks are used to determine which messages are to
be replayed, in which order, and which are to be discarded
(phase C). Then process p reaches back the crash point, and
the execution continues normally.

For efficiency reasons, keeping a backup of every mes-
sage during the whole execution is not reasonable in terms
of storage usage. As soon as a process has successfully

4

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

checkpointed its state, it will never need the other processes
to send the messages received before the checkpointed state
again. The protocol may use a garbage collector to free the
storage device of the corresponding copies.

When a process crashes, it restarts from the last success-
ful checkpoint. If another process also crashes, and restarts
earlier in its history than the first one, it will require old
messages from the first. One solution would be to rollback
the first process in a state preceding the emission of the re-
quired messages. However, this would directly lead to the
well known domino effect. To avoid this situation, the first
process has to restart with the copy of old messages, which
are thus to be included in the checkpoints.

The appendix A presents a formalization of this protocol,
used to prove its fault tolerance property.

4.2 Theoretical Foundations

In [23], the authors have demonstrated the fault toler-
ance property of pessimistic message logging protocols. We
prove here that MPICH-V2 communication protocol falls
into this category. In order to demonstrate the correctness
of the protocol, we define the following notions, using clas-
sical definitions. A system is a collection of processes, con-
nected by communication links. Each process follows an
algorithm; they can exchange information with connected
processes by sending or receiving a message. The union of
the algorithms for every process defines a communication
protocol. An atomic step is the application of an algorithm
rule, or a failure. Failures are defined as the rollback of one
process to any previously reached state. To each state, a
process associates a unique logical clock. A configuration
describes the state of every component of the system. A
transition is the simultaneous application of an atomic step
per process, for a subset of the processes leading one config-
uration into another. An execution is an alternate sequence
of configurations and transitions.

Definition 1 (Depend(m)) Let P be a communication
protocol, and E an execution of P . Let C be a configu-
ration of E and m a message of E. DependC(m) is the set
of processes that causally depend on the reception of m in
C.

Definition 2 (Re-Executable message) Let m be a mes-
sage received by q in the atomic step am, leading to state s.
Let c be the logical clock associated to s.

m is re-executable if c is logged on reliable media, and
if m is retrievable from the sender.

Definition 3 (Pessimistic Logging protocol) Let P be a
communication protocol, and E an execution of P with at
most f concurrent failures. Let MC denotes the set of mes-
sages transmitted between the initial configuration and the
configuration C of E.

P is a pessimistic message logging protocol if and only if

∀C ∈ E,∀m ∈ MC ,
(|DependC(m)| > 1) ⇒ Re − Executable(m)

Theorem 1 Let P be a communication protocol, and E be
an execution of P , if P is a pessimistic logging protocol, E
is equivalent to a fault-free execution.

This theorem is proved in [23] using another model. We
now use this result as a foundation to demonstrate that the
MPICH-V2 protocol is fault tolerant.

Theorem 2 The protocol of MPICH-V2 is a pessimistic
message logging protocol.

The full proof and the complete model of this theorem
are given in appendix A and B.

4.3 Overview of the MPICH-V2 Architecture

Dispatcher

Server
Checkpoint

Checkpoints
Scheduler

Event Logger

and communication daemons
Computing nodes

Network

Figure 3. Typical setup of a MPICH-V2 system

MPICH-V2 implements the pessimistic sender-based
protocol on top of MPICH 1.2.5, using a dispatcher,
a checkpoint scheduler, some event loggers, checkpoint
servers, computing nodes and their communication dae-
mons. The figure 3 presents a typical setup of a running
MPICH-V2 system, where the dispatcher, the event logger
and the checkpoint scheduler seat on the same computer.

Note that on a theoretical point of view, the checkpoint
scheduler and the checkpoint servers may be unreliable. In
the case where such a component fails, the computing nodes
requiring checkpoint images will not be served by the failed
checkpoint components and may restart from scratch, at
worst. However a typical setup would execute the check-
point scheduler on the same node as the dispatcher and the
event logger, which is the single node in the system that
must be reliable.

These architectural concepts inherit from the MPICH-
V1 concepts, but are improved to reduce the cost of commu-
nications and the number of reliable components. Figure 4
compares the architectures of MPICH-V1 and MPICH-V2.

The main difference between MPICH-V1 and MPICH-
V2 is the amount of reliable components required for rea-
sonable performances. In MPICH-V1, all the messages are

5

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Channel Memory Event Logger

Coordinator Dispatcher

Computing Nodes

Scheduler
Checkpoints

Network
Network

MPICH−V1 MPICH−V2

Server
Checkpoint

Server
Checkpoint

Computing Nodes
Communication deamons

Figure 4. Architectural comparison of MPICH-V1 and MPICH-V2.

stored in Channel Memories, involving a large number of
reliable media. In MPICH-V2, the message logging is split
in two parts: on the one hand, the message data is stored
on the computing node, following a sender-based approach.
On the other hand, the corresponding event (the date and
the identifier of the message reception) is stored on an event
logger which is located on a reliable machine. The amount
of information stored on the Event Logger is proportional
to the number of transmitted messages and not proportional
to the size of the payload like in MPICH-V1.

MPICH-V1 requires a complex communication scheme:
every message has to transit through the Channel Memory.
This involves two serialized TCP streams and increases the
communication time, doubling the communication traffic
over the network. In MPICH-V2, a message transit involves
two kinds of communications: a direct TCP stream from the
sender Computing Node to the receiver and a small message
(in the order of 20 bytes) to the Event Logger. Thus, the
communication time is expected to be better than the one of
MPICH-V1.

Compared to MPICH-V1, MPICH-V2 requires an addi-
tional component: the checkpoint scheduler. In MPICH-
V1, the decision of checkpointing was periodically trig-
gered by a local timer on each node. In MPICH-V2, check-
points do not need more coordination than in V1, but are
scheduled for efficiency reasons.

4.4 MPI Process

MPICH is a layered implementation of MPI described
in [15]. The MPI API is implemented by high-level prim-
itives of the Abstract Device Interface (ADI). The ADI is
implemented over another layer: the protocol layer which
implements the short, eager and rendez-vous protocols. At
last, these protocols are implemented over very basic prim-
itives: the channel interface.

MPICH-V2 is implemented as a channel for MPICH:
it implements a set of six primitives used by the proto-
col layer. The channel includes two communication func-

tions PIbrecv and PIbsend which are blocking operations
for receiving or sending a block of data. It includes four
other functions: PInprobe to check if a message is pend-
ing; PIfrom to get the identifier of the last message sender;
PIiInit to initialize the channel and PIiFinish to finish the
execution.

As in the P4 channel, the reference implementation for
TCP/IP, the MPI process does not connect directly to all
the other computing nodes. This is the job of a communi-
cation daemon running on the same machine and which is
connected to the MPI process and handles the asynchrony
of the network. This communication daemon establishes a
UNIX socket and then spawns the MPI process. There are
two kinds of messages exchanged along this socket: control
messages (for init, finish and probe) and protocol messages
(bsend, breceive).

The daemon is basically a select loop: it handles one
socket for every computing node and one socket for ev-
ery server (event logger, checkpoint server and checkpoint
scheduler). These sockets are TCP streams and every send
or receive operation is asynchronous. Thus, a communi-
cation is not blocked by another slower one. At contrary,
the communication across the UNIX socket to the MPI pro-
cess is synchronous and its granularity is the whole protocol
message.

4.5 The Logging System

The sender based pessimistic message logging protocol
of MPICH-V2 assumes that the logging of messages is split
in two parts. One part uses a sender based logging method
storing the messages payload on a non reliable media. The
other part (the event logger) is used to store dependency
information associated to these messages and must be run
on a reliable system.

As described in the architecture section, each process in-
crements a local logical clock when it sends or receives a
message. The message payload logging system is integrated
into the communication daemon located on the Computing

6

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Node. Every time a message is sent to a computing node, it
is stored locally in a list for further usages (sender based).
Moreover the value of the sender logical clock is stored with
the message copy.

Because of the non-reliability of the computing nodes,
all this information is lost in case of a crash, but will be
reconstructed if necessary during the re-execution.

The event logger is a repository executed on a reliable
component of the system. It stores and delivers dependency
information about messages exchanged by the computing
nodes. The dependency information is composed of four
fields associated to every received message: (sender’s iden-
tity; sender’s logical clock at emission; receiver’s logical
clock at delivery; number of probes since last delivery).

When a process receives a message in a non faulty ex-
ecution, it aggregates the sender’s identity and the sender’s
logical clock, found in the core of the message, with its own
logical clock on delivery and the number of unsuccessful
probes since the last delivery. In MPICH the upper layer
can probe the existence of messages to be received, in or-
der to implement non-blocking operations on top of block-
ing communication routines. We assume that a reception
always follows a successful probe. The number of probes
made since the last reception influences the next reception,
so the receiver counts this number to add it to the depen-
dency information, in order to replay exactly the same exe-
cution.

This information is collected during receptions of mes-
sages and sent asynchronously to the event logger. How-
ever, this information must be sent and acknowledged by
the event logger before the node can modify the state of an-
other MPI process by performing a send action. In order to
implement this, the communication daemon does not send
messages before the event logger has acknowledged the re-
ception of the preceding reception events.

When a fault occurs, the dispatcher detects it and spawns
new processes to finish the computation. Re-executing
nodes connect to their respective event logger and get the
dependency information of all their receptions. Then, they
execute the MPI program and ask for old messages logged
on their respective senders. Messages to be replayed are
identified by the couple (sender’s identity; sender’s logical
clock) of the dependency information that is part of the re-
emitted message. If some of these senders have crashed too,
the missing messages are eventually sent during senders’s
own re-execution.

For scalability reasons, several event loggers may be
used in a system, but every communication daemon must
be connected to exactly one event logger. Since there is no
dependency information to be managed between replaying
nodes, event loggers do not have to communicate with each
other.

4.6 The Checkpoint System

The checkpoint system is split in two parts: a server
which stores the checkpoint images and a scheduler coor-
dinating the checkpoints across all the system.

4.6.1 Checkpoint Management and Storage

The checkpoint server is a reliable repository storing the
checkpoint images of the MPI processes and of the commu-
nication daemons. The checkpoint of the MPI process uses
the Checkpoint Condor standalone library [17]. When it re-
ceives an order of checkpoint from the communication dae-
mon, the process forks in two parts. The first part sends its
process image to the communication daemon. Simultane-
ously, the second forked part continues the MPI application
execution such that the checkpoint transfer is completely
overlapped by the computation time. As the checkpoint is
triggered by the communication daemon, this insures that
there are no active communication at fork time.

On the MPI process point of view, there is no difference
between execution and re-execution. The program is called
by the communication daemon with a special argument han-
dled by the Condor library. The process image is sent by the
daemon in a special pipe and the process jumps to the last
checkpoint and continues the execution. All the complexity
of the communication replay is handled by the daemon.

The checkpoint of the communication daemon is not
handled by the Condor library but by a user level method,
serializing all the message information. When a checkpoint
is triggered, the daemon sends the checkpoint order to the
MPI process and gets back the process image. Then it seri-
alizes all its message data and sends them to the checkpoint
server. During whole this phase, the communications with
the other computing nodes are not suspended insuring that
the checkpoint transfer can be overlapped by the MPI pro-
cess computation.

When a computing node completes a checkpoint, it noti-
fies all other communication daemons of the logical clock of
this checkpoint. Once a checkpoint has been done at a par-
ticular logical clock, all the messages received before will
never be requested again. Thus all these messages can be
removed on their respective sender (garbage collector).

4.6.2 Checkpoint Scheduling

The checkpoint scheduling is motivated by two main rea-
sons: 1) the sender-based pessimistic message logging pro-
tocol induces an extensive use of the memory in the commu-
nication daemons and in the checkpoint servers. The check-
pointing is not only triggered by the objective of reducing
the impact of faults on the execution time, but also for re-
ducing the storage occupation by the logged messages. 2)
Checkpointing the communication daemon induces a traffic

7

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

proportional to the size of the emitted messages. This traffic
competes with the application communication traffic for the
network bandwidth and thus should be reduced as much as
possible.

The role of the checkpoint scheduler is to evaluate the
cost and the benefit of a checkpoint, at any specific time, and
to order the checkpoints accordingly. Periodically, it asks
the communication daemons to send their status (in terms of
the amount of logged messages), and evaluates the benefit
of a checkpoint. Note that since the protocol does not need
checkpoint coordination, the scheduling does not have to
be fair. We have developed two checkpointing policies: a
round robin, and an adaptive one.

The main advantage of the round-robin algorithm is
its lack of communication between the scheduler and the
nodes. Its main problem comes from the asymmetry of
some communications schemes. If the MPI program com-
munications are very symmetric (for example all-to-all
scheme), the amount of data stored on all the nodes is sim-
ilar and the round robin algorithm is fair. If the communi-
cation is asymmetric, some nodes have to be checkpointed
more often than others.

For these communications schemes, we provide the
adaptive algorithm, considering the ratio “amount of re-
ceived messages” over “amount of sent messages” for each
computing node. It computes a scheduling following a de-
creasing order of this ratio across the nodes. We have built
a simulator and have compared the two policies with clas-
sical communication schemes (point to point, synchronous
all to all, broadcasts and reduces). The comparison demon-
strates that the adaptive algorithm never provides a worse
scheduling (w.r.t. bandwidth utilization) and often provides
better scheduling (up to n times better, n being the number
of computing nodes for asynchronous broadcast).

4.7 MPIrun

Our goal while implementing the mpirun of MPICH-V2
is, like the rest of the project, to provide the users with a
completely seamless integration into the standard MPICH
architecture. Thus, despite the fact that MPICH-V2 might
require more information about the configuration of the dif-
ferent machines, the user just runs a parallel program us-
ing the standard mpirun command. Advanced users might
manually provide more customized information such as the
communication ports between the different entities.

The program uses a modular architecture, mainly be-
cause the checkpoint/restart feature of MPICH-V2 requires
a dispatcher for launching the different programs and also
for monitoring the execution of these programs. The two
main phases of a run are: the preparation of ‘program files’
describing the characteristics of the run and the execution
of the MPI program.

The run preparation consists in a shell script (which may

inter-operate with a batch scheduler) creating a ‘program
file’ from a list of available machines for a run and the
MPICH-V2 specific commands (executable, number of pro-
cessors to be used). The obtained program file is the equiv-
alent of a ‘P4PGFILE’ for the original MPICH-P4. It de-
scribes the run, with for each machine 1) its role inside
the system (Computing Node, Event Logger, Checkpoint
Server, Checkpoint Scheduler) and 2) the list of options for
that role. The user can specify these options for each ma-
chine through the use of an extended MPICH-like machines
file, or with general defined attributes by using special op-
tion flags, or with default configurations.

The execution monitor first launches the execution (by
rsh or ssh) of the different programs (CS, EL, SC, CN),
and then monitors the execution potentially re-launching the
crashed programs. To detect faulty nodes, we assume that
the whole execution runs on a synchronous (e.g. a Cluster)
or controlled area network (e.g. a Grid). In such networks,
a socket disconnection is considered as a trusty fault detec-
tor. Basically, at the beginning of the execution, one socket
is open for every computing node. The monitor pulls these
sockets for detecting disconnections. The number of open
sockets might be quite large. This has a negligible influence
on the overall network usage, since only very few messages
are sent during the whole execution. At the end of the pro-
gram, the monitor receives a finalize message from every
computing node. It cleans the execution pool by stopping
the different auxiliary programs.

5 Performance Evaluation

The experimental tests presented in the following section
have been run on a cluster of PCs under Linux 2.4.18. The
cluster has been used in dedicated mode to ensure a fair
comparison between the different implementations. The
cluster consists in two major parts: 32 computing nodes,
and 12 auxiliary machines connected to a single 48-port
Ethernet 100 Mbit/s switch.

The computing nodes are equipped with Athlon XP
1800+, running at 1.5 GHz and 1GByte of main memory
plus 1GByte of swap on IDE disk. The second part of the
cluster, which is used to run the different auxiliary programs
(Event Loggers, Checkpoint Servers, Checkpoint Sched-
ulers), is composed of dual-Pentium III machines, with pro-
cessors running at 500MHz with 512MB of main memory
and 1GByte of swap on IDE disk.

All MPI implementations use the MPICH version 1.2.5.
Test programs were compiled using the GNU GCC, version
2.96 and PGI PGF77 compilers. To compile the MPICH
implementations (P4, MPICH-V, MPICH-V2), we use the
default optimizations as recommended by the MPICH team.
In order to use the Condor checkpoint library, we used the
condor compile wrapper, integrated in MPICH-V2 wrap-

8

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

pers for the link phase. For the C MPI microbenchmarks,
we used the compilation flags -O3. For the Fortran MPI
programs we used the compilers -O3 -tp=athlonxp.

The performance and fault tolerance comparison will
consider MPICH-P4 and MPICH-V1. While some of the
others fault tolerance MPI implementations are available
for download, they either did not match our experimental
conditions (Egida runs on Sun Solaris 2.8) or implement
other fault tolerance techniques: Starfish uses a coordi-
nated checkpoint protocol and is implemented in OCaml,
CoCheck is also based on coordinated checkpoint and re-
quires the tuMPI implementation, FT-MPI and LA-MPI tar-
get other fault tolerance approaches (user or network level).

5.1 Raw Communication Performance

Before presenting the performance of application bench-
marks, we present the comparison between MPICH-P4,
MPICH-V1 and MPICH-V2 on bandwidth and latency, for
a synchronous ping-pong test. As usual, the performance
evaluation considers a mean over a large number of mea-
surements. For MPICH-V1, we use 2 Memory Channels in
addition to the computing nodes.

Figures 5 and 6 present the comparison of the bandwidth
and latency obtained with this ping pong test.

1 2 4 8 16 32 64
128

256
512 1K 2K 4K 8K

16K
32K

64K
128K

256K
512K1M 2M 4M 8M

16M

Message size (Bytes)

0

1

2

3

4

5

6

7

8

9

10

11

12

B
an

dw
id

th
 (M

B
yt

es
/s

)

MPICH-P4 ethernet 100
MPICH-V1 ethernet 100
MPICH-V2 ethernet 100

Bandwidth comparison
Between P4, V1 and V2

Figure 5. Bandwidth comparison for a ping-
pong test for the 3 different MPI libraries

The maximum bandwidth obtained with MPICH-V2 for
large message sizes is 10.7 MByte/s, while for the same
messages, MPICH-P4 reaches 11.3 MByte/s. As expected,
MPICH-V2 is slightly slower than MPICH-P4, but remains
always close to MPICH-P4. The difference is explained by
the acknowledge of message logging with the event loggers.
MPICH-V1, tested with one memory channel per comput-
ing node, is down to two times slower than MPICH-P4.

However, as presented in [5], the slowdown of MPICH-V1
is reduced by two when using asynchronous communica-
tion routines. This slowdown is explained by the communi-
cation protocol which involves crossing a Channel Memory
for each communication. MPICH-V2 has been designed
to overcome this penalty by removing the need of Channel
Memories.

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K

Message size (Bytes)

100

1000

10000

La
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

MPICH-P4 ethernet 100
MPICH-V1 ethernet 100
MPICH-V2 ethernet 100

Latency comparison
Between P4, V1 and V2

Figure 6. Latency comparison for a ping-pong
test for the 3 different MPI libraries

The minimum latency obtained with MPICH-V2 for
short messages (0-byte long) is 237 microseconds, while
with P4, it is 77 microseconds. For short messages, the
overhead of MPICH-V2 is explained by the cost of the syn-
chronization with the event logger: the next message of a
sequence can not be sent until the logging of the previous
one is acknowledged. Between two sends, six TCP mes-
sages are sent with MPICH-V2 (P4 only sends two). For
large messages, the overhead of event logging becomes neg-
ligible because most of the communication time is spent on
the transfer of the message payload.

5.2 The NAS Benchmarks

In order to test the performance of MPICH-V2 on a wide
set of well established and optimized MPI programs, we
test the performance of the NAS Parallel Benchmark ([3])
NPB 2.3 with MPICH-P4 and MPICH-V2. For all tests with
MPICH-V2 we execute the Event Logger, the Checkpoint
Server and the Checkpoint Scheduler on a single reliable
node. However no checkpoint is executed during the runs.

We use the following kernels: CG, MG, FT, and mini-
applications: LU, BT, SP with dataset size A and B. We
present the performances up to 32 processors, except for
BT and SP which require a square number of processors
(maximum: 25 in these cases).

9

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

1 2 4 8 16 32
processors

0

100

200

300

400

M
eg

af
lo

ps

MPICH-P4
MPICH-V2

CG, Class A

1 2 4 8 16 32
processors

0

100

200

300

400

CG, Class B

1 2 4 8 16 32
processors

0

500

1000

1500

2000

MG, Class A

1 2 4 8 16 32
processors

0

500

1000

1500

2000

MG, Class B

1 2 4 8 16 32
processors

0

200

400

600

800

M
eg

af
lo

ps

FT, Class A

1 2 4 8 16 32
processors

0

1000

2000

3000

4000

LU, Class A

1 2 4 8 16 32
processors

0

1000

2000

3000

4000

5000

LU, Class B

1 4 9 16 25
processors

0

500

1000

1500

2000

M
eg

af
lo

ps

BT, Class A

1 4 9 16 25
processors

0

1000

2000

3000

BT, Class B

1 4 9 16 25
processors

0

250

500

750

1000

SP, Class A

1 4 9 16 25
processors

0

500

1000

1500

SP, Class B

Figure 7. Performance comparison of the P4 and V2 MPI implementations for the NPB 2.3 Class A
and B

Figure 7 presents the performance comparison of the 3
tested MPI implementations for the NPB 2.3.

Figure 7, clearly demonstrates that the higher latency of
MPICH-V2 leads to a high performance penalty compared
to MPICH-P4 for benchmarks using a lot of short mes-
sages, like CG and MG. FT uses an All-to-All communi-
cation pattern involving many large messages. The band-
width of MPICH-V2, which is close to the one of MPICH-
P4 for large messages, allows MPICH-V2 to reach the per-
formance of MPICH-P4 on FT. We do not present the per-
formance of FT Class B due to memory size limitations. We
use a maximum storage size of 2 GB (1 GB on memory +
1 GB on disk) per node for message logging. This value
is exceeded when executing FT Class B. Thus, checkpoint-

ing is recommended in such a case not only for fault tol-
erance but also for removing logged messages on the com-
puting nodes. The poor performance of LU is explained
by the use of the disk storage which reduces dramatically
the performance of the message logging system. Note that
for LU, a decomposition of the execution time (computa-
tion time + communication time) shows that the message
logging daemon becomes a competitor of the MPI process
for CPU resources, increasing the computation time com-
pared to MPICH-P4. The last two benchmarks, SP and BT,
demonstrate that MPICH-V2 can provide the same perfor-
mance as MPICH-P4 or even better ones. It is obvious that
MPICH-V2 will not be used to run very short duration ker-
nels like the NAS CG and MG very sensitive to communica-

10

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

tion latency. MPICH-V2 targets long duration applications
involving large messages. The performance on SP and BT
clearly shows that MPICH-V2 is well suited to this kind of
applications.

Figure 8 presents execution time breakdown of CG-A
and BT-B (two performance extremes for MPICH-V2). We
also recall the performance of MPICH-V1 for the same pro-
grams. The system setup for MPICH-V1 uses N/4 Memory
Channels, N being the number of computing nodes.

1 2 4 8 16 32
processors

0

10

20

30

40

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Communication time for P4
Computation time for P4
Communication time for V1
Computation time for V1
Communication time for V2
Computation time for V2

CG, class A

4 9 16 25
processors

0

200

400

600

800

1000
BT, class B

Figure 8. Execution time breakdown of the 3
MPI implementations for CG-A and BT-B

Figure 8 shows that the computation times are the same
for all the implementations for the two benchmarks. The
poor performance of MPICH-V1 and MPICH-V2 for CG-
A is explained by the communication time, which increases
dramatically, due to the overhead of the message logging
protocols. MPICH-V1 performs better than MPICH-V2 for
this small communications due to its lower latency for small
messages. For BT-B, the communication performance of
MPICH-V2 is better than both MPICH-P4 and MPICH-V1.
This is due to lower bandwidth of MPICH-V1 for large
messages and the different ways how asynchronous com-
munications are handled in MPICH-P4 and MPICH-V2.
MPICH-V2 requires much less reliable nodes than MPICH-
V1 (1 versus 9 for 32 computing nodes).

Table 1 presents a decomposition of communication time
for BT and CG benchmarks (Class A).

This communication time breakdown clearly high-
lights the architecture difference between MPICH-V2 and
MPICH-P4. In MPICH-V2, all communications are ex-
ecuted by the daemon processes associated with the MPI
processes. If the communication is an asynchronous send,
MPICH-P4 sends the message payload during the execution
of the ISend function, while MPICH-V2 only posts a mes-

Function BT A 9 CG A 8
P4 V2 P4 V2

MPI (I)send 44.9s 3.4s 3.5s 0.6s
MPI Irecv 0.32s 0.32s 0.0038s 0.0130s
MPI Wait 4s 17.5s 1.6s 13.8s

Total time 49.22s 21.22s 5.1s 14.413s

Table 1. Time decomposition of MPI commu-
nication functions for BT and CG benchmarks
for MPICH-V2 and MPICH-P4

sage notification. In MPICH-V2, the actual message trans-
mission is done during the execution of the Wait function.
The table demonstrates that MICH-V2 increases the com-
munication time for CG-A-8 by a factor of 3. The reason
behind this poor performance is the fault tolerant protocol
which imposes that any reception event must be logged on
the Event Logger before any subsequent emission. The ta-
ble also confirms the better performance of MPICH-V2 for
the BT benchmark.

To explain the difference, we present a synthetic bench-
mark (Figure 9) measuring the bandwidth of a communi-
cation pattern identical to the one of BT and SP bench-
marks. The test performs a ping-pong of 10 non-blocking
sends (MPI ISend), 10 non blocking receives (MPI IRecv)
and then waits for all these communications to finish
(MPI Waitall).

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M

Message size (Bytes)

0

2

4

6

8

10

12

14

16

18

20

B
an

dw
id

th
 (

M
B

ys
te

s/
s)

MPICH-P4 Ethernet 100
MPICH-V2 Ethernet 100

Figure 9. Bandwith comparison between
MPICH-P4 and MPICH-V2 for a synthetic
benchmark executing a communication pat-
tern identical to the one of BT/SP benchmarks

11

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Excepted for small messages where the higher latency
of MPICH-V2 is predominant, MPICH-V2 performs better
for non-blocking communications than MPICH-P4, reach-
ing twice the P4 bandwidth for 64Kbytes messages. This
higher communication performance of MPICH-V2 is due
to its capability to handle full duplex communications. In
contrary to the P4 driver, when sending a message, the V2
driver pools for incoming receptions after each transmission
of a message chunk. This driver structure gives an advan-
tage to MPICH-V2 for long messages.

5.3 Re-execution Performance

Figure 10 shows the re-execution performance. The
benchmark consists of an asynchronous MPI token ring ran
by 8 computing nodes and a server running the event log-
ger. For measuring the re-execution time we stop the bench-
mark execution just before the MPI finalize call. Then we
stop and restart some computing nodes from the beginning
and measure their completion time. For this microbench-
mark, the checkpoint features of MPICH-V2 are deactivated
(checkpoint scheduler and server).

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50000 100000 150000 200000 250000

T
im

e
in

 s
ec

on
ds

Message size in bytes

"0-restart"
"1-restart"
"2-restart"
"3-restart"
"4-restart"
"5-restart"
"6-restart"
"7-restart"
"8-restart"

Figure 10. Performance of Re-execution

The reference curve (0-restart) shows the performance
of the first complete run of the benchmark without restart.
The “x-restart” curves show the time for re-executing this
application on “x” nodes.

The non-linearity of the curves between 64kB and 128kB
is due to the protocol change from eager to rendez-vous.
The figure shows that re-execution time for one single
restart is about half of the reference one because: 1) for this
benchmark each node is executing the same amount of re-
ceptions and emissions and 2) during the re-execution, only
the receptions are replayed.

When a large amount of nodes are re-executing, the re-

execution time becomes close to the reference one but stays
lower because the communications to the event logger are
not replayed.

5.4 Faulty Execution

The next evaluation consists in measuring the perfor-
mance degradation of the BT benchmark when faults oc-
cur during the execution. Figure 11 presents the execution
time of BT for the class A dataset size using 4 computing
nodes and a single reliable node for executing the Check-
point Server, the Checkpoint Scheduler and the Event Log-
ger.

0 1 2 3 4 5 6 7 8 9
Number of faults

200

250

300

350

400

450

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Checkpointed execution, with faults
Non checkpointed execution, without fault (reference time)

BT Class A 4 nodes

Figure 11. Performance of BT-A on 4 nodes
when the number of faults increases during
the execution

The checkpoint of a node immediately follows the one
of another node. Thus, the system is always checkpoint-
ing a node. We use a scheduling policy randomly select-
ing the node to checkpoint. We simulate faults by sending
a termination signal to a randomly selected MPI process.
Faults may occur at any time during the execution, includ-
ing during the checkpoint or during the re-execution. They
are triggered randomly. The execution is restarted immedi-
ately from the checkpoint image provided by the checkpoint
server. If no checkpoint image is available, the MPI process
restarts the execution from the beginning.

Figure 11 demonstrates 1) the low overhead of the check-
point system when no fault occurs 2) the smooth degrada-
tion of the execution time according to the number of con-
secutive faults and 3) an execution time lower than twice
the reference execution time (without fault) when 9 faults
occur during the execution. This last test clearly highlights
the fault tolerance properties of MPICH-V2.

12

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

6 Conclusion and Future Works

We have presented the second protocol for MPICH-
V using an original sender based pessimistic message
logging protocol. This MPI implementation, based on
MPICH 1.2.5, provides transparent/automatic fault toler-
ance. MPICH-V2 architecture relies on five components: a
set of Computing Nodes, a Dispatcher, a set of Checkpoint
Servers, a Checkpoint Scheduler and a set of Event Log-
gers. The main motivation for designing and implementing
MPICH-V2 was to remove the cost and performance penal-
ties involved by the use of Channel Memories in the first
version of MPICH-V. A typical deployment of MPICH-V2
involves a set of volatile computing nodes, a reliable node
for executing the Checkpoint Server, and a second reliable
node for running the Dispatcher, the Checkpoint Sched-
uler and the Event Logger. Thus, compared to MPICH-V1,
MPICH-V2 requires much less reliable nodes.

Using the Ping-Pong test, we have demonstrated that
the bandwidth of the new protocol is close to the one
of MPICH-P4 and outperforms the one of MPICH-V1.
The performance comparison using the NAS Benchmarks,
shows that MPICH-V2 can not compete in performance
with MPICH-P4 on CG and MG kernels due to its high
latency on small messages. However, MPICH-V2 targets
long duration applications using large messages. The per-
formance for the SP and BT benchmarks demonstrates that
MPICH-V2 reaches the performance of MPICH-P4 for such
applications. The execution of BT class A on 4 nodes, with
up to 9 consecutive faults (1 fault every 45 seconds) high-
lights the fault tolerance properties of MPICH-V2, lead-
ing to a performance degradation compared to MPICH-P4
lower than a factor of 2.

Future works will consider improving the performance
for small messages and test MPICH-V2 on large clusters
and Grid deployments.

7 Acknowledgments

We deeply thank Prof. Joffroy Beauquier and Prof.
Brigitte Rozoy for their help in the design of MPICH-V
general protocol.

MPICH-V belongs to the ”Grand Large” project of the
PCRI (Pole Commun de Recherche en Informatique) of
Saclay (France) and the INRIA Futurs.

MPICH-V project is partially funded, through the
CGP2P project, by the French ACI initiative on GRID of
the ministry of research. We thank its director, Prof. Michel
Cosnard and the scientific committee members.

References

[1] A. Agbaria and R. Friedman. Starfish: Fault-tolerant
dynamic mpi programs on clusters of workstations.
In In 8th International Symposium on High Perfor-
mance Distributed Computing (HPDC-8 ’99). IEEE
CS Press, August 1999.

[2] L. Alvisi and K. Marzullo. Message logging : Pes-
simistic, optimistic, and causal. In Proceedings of the
15th International Conference on Distributed Com-
puting Systems (ICDCS 1995), pages 229–236. IEEE
CS Press, May-June 1995.

[3] David Bailey, Tim Harris, William Saphir, Rob
Van Der Wijngaart, Alex Woo, and Maurice Yarrow.
The NAS Parallel Benchmarks 2.0. Report NAS-
95-020, Numerical Aerodynamic Simulation Facility,
NASA Ames Research Center, 1995.

[4] R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua,
A. Skjellum, Y. Dandass, and M. Apte. Mpi/ftTM: Ar-
chitecture and taxonomies for fault-tolerant, message-
passing middleware for performance-portable paral-
lel computing. In In Proceedings of the 1st Interna-
tional Symposium of Cluster Computing and the Grid
(CCGRID2001, Melbourne, Australia, May 2001.
IEEE/ACM.

[5] George Bosilca, Aurélien Bouteiller, Franck Cap-
pello, Samir Djilali, Gilles Fédak, Cécile Germain,
Thomas Hérault, Pierre Lemarinier, Oleg Lodygen-
sky, Frédéric Magniette, Vincent Néri, and Anton Se-
likhov. Mpich-v: Toward a scalable fault tolerant mpi
for volatile nodes. In SC2002: High Performance Net-
working and Computing (SC2002), Baltimore USA,
Novembre 2002. IEEE/ACM.

[6] K. M. Chandy and L.Lamport. Distributed snapshots
: Determining global states of distributed systems.
In Transactions on Computer Systems, volume 3(1),
pages 63–75. ACM, February 1985.

[7] Yuqun Chen, Kai Li, and James S. Planck. Clip: A
checkpointing tool for message-passing parallel pro-
grams. In SC97: High Performance Networking and
Computing (SC97). IEEE/ACM, November 1997.

[8] Elnozahy, Elmootazbellah, and Zwaenepoel.
Manetho: Transparent rollback-recovery with
low overhead, limited rollback and fast output. IEEE
Transactions on Computers, 41(5), May 1992.

[9] E. N. Elnozahy and W. Zwaenepoel. Replicated dis-
tributed processes in manetho. In 22nd International
Symposium on Fault Tolerant Computing (FTCS-22),

13

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

pages 18–27, Boston, Massachusetts, 1992. IEEE
Computer Society Press.

[10] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in mes-
sage passing systems. Technical Report CMU-CS-96-
181, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA, October 1996.

[11] Robert E.Strom, David F. Bacon, and Shaula A. Yem-
ini. Volatile logging in n-fault-tolerant distributed sys-
tems. In 18th Annual International Symposium on
Fault-Tolerant Computing (FTCS-18), pages 44–49.
IEEE CS Press, June 1988.

[12] G. Fagg and J. Dongarra. FT-MPI : Fault tolerant
MPI, supporting dynamic applications in a dynamic
world. In 7th Euro PVM/MPI User’s Group Meet-
ing2000, volume 1908 / 2000, Balatonfred, Hungary,
september 2000. Springer-Verlag Heidelberg.

[13] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. Har-
ness and fault tolerant mpi. Parallel Computing,
27(11):1479–1495, October 2001.

[14] William Gropp and Ewing Lusk. Fault tolerance in
mpi programs. special issue of the Journal High Per-
formance Computing Applications (IJHPCA), 2002.

[15] William Gropp, Ewing Lusk, Nathan Doss, and An-
thony Skjellum. High-performance, portable imple-
mentation of the mpi message passing interface stan-
dard. Parallel Computing, 22(6):789–828, September
1996.

[16] Charles E. Leiserson, Zahi S. Abuhamdeh, David C.
Douglas, Carl R. Feynman, Mahesh N. Ganmukhi,
Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kusz-
maul, Margaret A. St Pierre, David S. Wells, Mon-
ica C. Wong-Chan, Shaw-Wen Yang, and Robert Zak.
The network architecture of the Connection Machine
CM-5. Journal of Parallel and Distributed Comput-
ing, 33(2):145–158, 1996.

[17] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and migration of unix processes in the
condor distributed processing system. Technical Re-
port Technical Report 1346, University of Wisconsin-
Madison, 1997.

[18] S. Louca, N. Neophytou, A. Lachanas, and P. Evripi-
dou. Mpi-ft: Portable fault tolerance scheme for mpi.
In Parallel Processing Letters(PPL), volume 10(4).
World Scientific Publishing Company, 2000.

[19] M. Paterson M. Fischer, N. Lynch. Impossibility of
distributed consensus with one faulty process. Journal
of the ACM, 32:374–382, April 1985.

[20] Sriram Rao, Lorenzo Alvisi, and Harrick M. Vin.
Egida: An extensible toolkit for low-overhead fault-
tolerance. In 29th Symposium on Fault-Tolerant Com-
puting (FTCS’99), pages 48–55. IEEE CS Press, 1999.

[21] M. Snir, S. Otto, S. Huss-Lederman,
D. Walker, and J. Dongarra. MPI: The
Complete Reference. The MIT Press, 1996.
http://www.netlib.org/utk/papers/mpi-
book/mpi-book.html.

[22] Georg Stellner. Cocheck: Checkpointing and process
migration for mpi. In Proceedings of the 10th Inter-
national Parallel Processing Symposium (IPPS ’96),
Honolulu, Hawaii, April 1996. IEEE CS Press.

[23] E. Strom and S. Yemini. Optimistic recovery in dis-
tributed systems. In Transactions on Computer Sys-
tems, volume 3(3), pages 204–226. ACM, August
1985.

[24] Gerard Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 1994.

14

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Appendix

A MPICH-V2 protocol

We present here the MPICH-V2 protocol, simplified for
readability reasons. This version of the protocol is used in
the appendix B for the proofs.

Variables for process p

ELp list of events to replay (init : empty)

Hp logical clock (automatically increased at every
computation step) (init : 0)

HRp[q] date of last received event from process q (in
q’s clock) (init : 0)

HSp[q] date of last sent event to process q (in p’s
clock) (init : 0)

SAV EDp set of messages backup (init : empty)

Routines

LOG(data, d) schedules the saving of information
data at date d in a reliable media

WAITLOGGED() blocks until every previous
LOG() call have completed

SEND(x, d) sends the data x to the processor d

UNDETACTION(d) executes the undeterministic
action with the corresponding data d

POP (list) pops the first event of the list list

DELIV ER(m, p) delivers the message m from pro-
cess p to the MPI process

RECV (m, p) receives the message m from process p

ROLLBACK() loads the last previous successful
checkpoint, then finishes the actions and contin-
ues the execution where the checkpoint was taken

DownloadEL(Hp) gives all data stored in the reli-
able media for all clocks > Hp.

Actions for process p
These actions implement the corresponding routines
for the application.

send(m, q)
if Hp ≥ HSp[q]∣∣∣∣∣∣∣∣

WAITLOGGED()
SAV EDp = SAV EDp

⋃{(m, Hp, q)}
SEND((Hp, p, m), q)
HSp[q] = Hp

UnDetAction(data)
if ELp is empty∣∣∣∣

LOG(data, Hp)
UNDETACTION(data)

else∣∣∣∣
logdata = POP (ELp)
UNDETACTION(logdata)

recv()
if ELp is empty∣∣∣∣∣∣∣∣

RECV ((Hq, q, m), q)
HRp[q] = Hq

LOG((Hq, q), Hp)
DELIV ER(m, q)

else∣∣∣∣∣∣

(logHq, logq) = POP (ELp)
RECV ((logHq, logq, m), logq)
DELIV ER(m, q)

Rules for process p
These rules are called when the corresponding event
occurs at process p

on Restart()
ROLLBACK()
ELp = DownloadEL(Hp)
∀q, SEND(RESTART1(HRp[q]), q)

on RECV(RESTART1(HP), q)
HSp[q] = HP
SEND(RESTART2(HRp[q]), q)
∀(m, h, q) ∈ SAV EDp,

if(h > HSp[q])SEND((h, p, m), q)

on RECV(RESTART2(HP), q)
HSp[q] = HP
∀(m, h, q) ∈ SAV EDp,

if(h > HSp[q])SEND((h, p, m), q)

B Theoretical Foundations

In order to prove the theorem 2, we consider the follow-
ing model, derived from [24]: a system consists of a set
of processes linked together by communication channels.
A process is a state machine (Σ, I ∈ Σ, F ⊆ Σ, ω, δ ⊆
Σ × ω × Σ), where Σ is the set of states of the process, I
the initial state, F a set of final states, ω the set of actions
of the process, and δ the relationship of atomic steps of the
process.

Basically, ω holds three kinds of actions : internal step
(the jth internal step of process p is denoted ijp), receptions
(a reception at the process p from the process q of the mes-
sage m is denoted rq

p(m)) and emissions (an emission at
the process p to the process q of the message m is denoted
eq
p(m)). We add another special atomic step, CAR that we

describe later, used to model faults.

15

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

A communication channel is a FIFO queue that links to-
gether two processes. When a process p does an emission
to q of m, m is appended to the communication channel
(p, q) ; when q does a reception from p of m, m is the first
element of (p, q) and is removed from (p, q).

A configuration of the system is the couple (P, L), where
P is the vector of the states of every process in the system,
and L =< (p, q)\p, q processes > the vector of the queues
of the communication channels.

The configuration where every communication channel
is empty and every process is in its initial state is called
the initial configuration. Every configuration where every
process is in one of its terminal state is called a terminal
configuration.

Let C be a configuration of the system S, the applica-
tion of at most one atomic step per process to C is called a
transition.

An execution of the system S is an alternated sequence
of configurations and transitions C0, T0, C1, . . . , Cn, where
C0 is the initial configuration of S, Ti is a transition where
every atomic step is applicable to Ci and leads to Ci+1. Cn

is a terminal configuration.

Crash with recovery model
The model of fault we consider includes permanent fail-

ures of processes. Within asynchronous systems, it is well
known that the detection of such faults is impossible ([19]).
We assume here the existence of failure detectors, which
detect the crashes, and a monitor which restarts eventually
every crashed process in the state where the only possible
atomic step consists in execute the on Restart() rule.

Thus, we model a fault by a specific atomic step CAR
(Crash And Recover). When doing a CAR step, a process
resets its state to the initial state and call the on Restart
rule, and every communication channel connected to it is
emptied.

Let T be a transition from C to C ′. Let a be an atomic
step of process p, element of the transition T . We note
T |p = a.

Definition 4 (Causal dependency) Let S be a system, P
the set of processes of S and C0 the initial configu-
ration of S. The causal order of an execution E =
C0, T0, C1, T1, . . . , Cn is a partial order � on the atomic
steps of the processes such that:

1. i < j ⇒ Ti|p � Tj |p
2. Ti|p = ep′

p (m) ∧ Tj |p′ = rp
p′(m) ⇒ (i < j) ∧

(Ti|p � Tj |p′)

3. ∃g : e � g ∧ g � f ⇒ e � f

Definition 5 (deterministic event) The application of an
atomic step on a process p from a state s is called an event.

An event on a process p is called a deterministic event if
this atomic step is the only possible step to be executed from
state s. If an event is not a deterministic event, it is called
an undeterministic event.

Definition 6 (Piecewise determinism (PWD)) Let
(e0, e1, . . . , ei) be the sequence of events on a pro-
cess p during an execution E. The piecewise determinism
assumption assume that this sequence can be split in
intervals such that all intervals except the first one begin
with one undeterministic event followed by a finite number
of deterministic events. The first interval is composed of a
finite number of deterministic events.

The first theorem ensures that under the Piecewise de-
terminism assumption, a process that reexecutes the same
sequence of undeterministic events as in initial execution
reexecutes the same total sequence of events computed in
initial execution.

Theorem 2 The protocol of MPICH-V2 is a pessimistic
message logging protocol.

Proof: Since the MPICH-V2 protocol splits the messages
in two parts : the logical clock of the reception in one hand,
and the message payload in the other hand, the proof is done
in two parts : first, we prove that every event which must be
re-executable, in order to be a pessimistic message logging
protocol, has its logical date logged on a reliable media,
then we prove that any undeterministic event whose logical
date is logged on a reliable media is re-executable.

a) By definition of the pessimistic message logging pro-
tocols, in every configuration C of an execution E, for every
message m transmitted between the initial configuration I
of E and C, if |DependC(m)| > 1, the message m must be
re-executable.

Let rp′
p (m) denotes the reception of m in transition

Ti. By definition of Depend, in any configuration Cj ,
DependCj

(m) = {P s.t. ∃k ∈ [i, j[, rp′
p (m) � Tk|P }

We prove by contradiction that until m is logged, for any
j, |DependCj

(m)| ≤ 1. Assume, for the sake of contra-
diction, that at some configuration Cj such that the logical
date of message m is still not logged, |DependCj (m)| >
1: by definition of causal dependency, there exist a pro-
cess p1 	= p, u ∈ [i, j − 1[, v ∈]u, j[and m′ a mes-
sage such that Tu|p = ep1

p (m′), Tv|p1 = rp
p1(m

′) and
Tu|p � Tv|p1. Thus p is a member of DependCj

(m) and
Ti|p = rp′

p (m) � Tu|p = ep1
p (m′)

According to the action send() of the protocol, it thus
means that WAITLOGGED() has returned (since no
message is actually sent before WAITLOGGED() re-
turned). But, according to the action recv() of the proto-
col, the logical date of m has been scheduled to be logged

16

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

before the emission of m′. So, WAITLOGGED() has re-
turned, ensuring m is logged in Cj and, by hypothesis, m is
not logged in Cj . We reach a contradiction. Thus, until the
logical clock of m is safely logged, |DependC(m)| ≤ 1.

b) According to the UnDetAction() and recv() actions
of the protocol, every undeterministic action is logged with
every information necessary to re-execute them, except the
message data. We prove now that whatever the faults are,
the protocol ensures that every message which date has been
logged can be re-executed, meaning that its data (which is
not logged) can be retrieved or built.

Let E be an execution with a finite number of faults lead-
ing to a configuration C. Let L be the finite set of all logi-
cal dates needed to be replayed in order to be a pessimistic
message logging protocol |L| = l Let [H1, H2, . . . , Hn]C
be the vector of processes clock in the configuration C. Let
[]C|p be the clock of p in C.

According to the piecewise determinism propriety, all
deterministic events from the configuration C will be re-
played until the next undeterministic event of each process,
leading to a configuration C ′.

Now we have to prove that all events logged in L are
re-executable.

We prove by contradiction that in every configuration
reached from C ′ by replaying some logged events there ex-
ists at least one logged event that can be reexecuted.

In the configuration C ′ all processes are waiting for an
undeterministic event. Assume there is no log re-executable
in L. Thus for all logs (h, pi, []C′|pj

) in L, h > []C′|pi
, or

else according to the lemma 1 there exists an unique saved
message (m, h, pi) in SAV EDpi . and m is re-executable.

Let F = {p1, . . . , pm} be the finite set of processes that
have a log in L in configuration C ′, |F | = m

For all processes p in F , let ritp(m) be the event of the
initial execution that have been logged such that it is the
next event to be reexecute by p in C ′. Let eipt (m) be the
send event of the message received in ritp(m).

Let pi be a process of F . There exist a process pj and a
message m1 such that eipi

pj
(m1) � ri

pj
pi (m1). pj is a mem-

ber of F . If pj is not a member of F then it either have not
crashed or, according to theorem 1, have achieved to reexe-
cute its send event as in initial execution Thus, according to
lemma 1, m1 is in SAV EDpj

and ri
pj
pi (m1) can be reex-

ecuted. pj 	= pi (assertion 1) or else m1 is in SAV EDpi
,

according to lemma 1, and thus ri
pj
pi (m1) can be reexecuted.

Thus pj ∈ F\{pi}
There exists a process pk and a message m2 such that

ripk
pj

(m2) � eipi
pj

(m1). By definition of causal dependency,
every couple of events {e1, e2} happening on the same pro-
cess are totally ordered: e1 � e2 or e2 � e1. If eipi

pj
(m1) �

ripk
pj

(m2) then according to theorem 1, eipi
pj

(m1) has been
reexecuted and according to lemma 1, m1 is in SAV EDt

and ri
pj
pi (m1) can be reexecuted in C ′, thus

ei
pj
pk(m2) � ripk

pj
(m2) � eipi

pj
(m1) � ri

pj
pi (m1)

Moreover pk 	= pj (same proof as assertion 1) and
pk 	= pi. If pk = pi then ei

pj
pi (m2) � ri

pj
pi (m1) and m2

is in SAV EDpi according to lemma 1. So ripk
pj

(m2) can
be reexecuted, Thus pk ∈ F\{pi, pj}.

Recursively m times,
eipv

pu
(m3) � ripu

pv
(m3)︸ ︷︷ ︸

1

� · · · � eipi
pj

(m1) � ripj
pi

(m1)
︸ ︷︷ ︸

m

and we reach pu ∈ F\F = ∅ in order to can not re-
execute any logged event of L. Thus pu is either not a
crashed process and then, according to lemma 1, have a
copy of the message m3 in SAV EDpu

, or there exists a
process pw ∈ F such that eipv

pu
(m3) � ripw

pu
(m4) and m3 is

in SAV EDpu
.

In either case ripu
pv

(m3) can be reexecuted, in contradic-
tion to hypothesis that no logged event in L can be reexe-
cuted. Thus in configuration C ′ there exists a logged event
e in L that can be reexecute similarly as in the initial execu-
tion, leading to a configuration C ′′ with L\e undeterminis-
tic events to be reexecuted, |L| = l − 1.

We prove similarly that in every configuration C ′′

reached from C by replaying some logged events
(e1, . . . , e2), there is an event e of L|(e1, . . . , e2) that
can be reexecuted, leading to configuration C ′′′ with
L|(e1, . . . , e2, e) remaining logged events to reexecute, and
so on l times until L = ∅. Thus, for every logged event e in
L, e can be reexecuted.

Lemma 1 Let C ′ be the configuration reaches after a fi-
nite number of faults such that all crash processes have re-
played their execution until their first undeterministic event
to be reexecuted, ∀(hp, p, hq) ∈ reliable media s.t hp <
[]C′|p , ∃(m, hp, q) ∈ SAV EDp

Proof: According to the on Restart() action, when
restarted, a process p loads its checkpoint image including
the clock hp of this process state and the set SAV EDp of
all messages sent with a clock lower than hp. Moreover
according to the protocol, all send() events which are de-
terministic are replayed at the same clock with the same
data and thus according to the sent() action are appended
to respective SAV ED set. Thus for all processes p, for all
logical dates []C′|p , for all logs in reliable media (hp, p, hq)
with hp < []C′|p then there ex¡ists an unique m such that
(m, hp, q) ∈ SAV EDp.

17

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

